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We study a two-dimensional model of drying of capillary porous media when gravity or viscous forces lead
to the formation of a stabilized front. When gravity forces stabilize the front, the mean front width, defined as
the mean perpendicular distance between the front’s most advanced and least advanced points, is found
theoretically to scale with the Bond numberB as B211(11b)/(11n), whereb is the percolation probability
exponent andn is the correlation length exponent. This scaling is confirmed numerically and is consistent with
the experimental results of Shaw@Phys. Rev. Lett.59, 1671~1987!#. The global mass transfer coefficient of the
front is studied numerically. To this end, we study the positionzc2d of the equivalent smooth line leading to
the same evaporation flux as the front. In the transient case,zc2d is found to scale with the Bond numberB
as B20.63. In the stationary case, i.e., when the front reaches a stationary position within the medium, it is
found thatzc2d's wheres is the standard deviation of the positions of the points forming the front around
its mean positionzc . These results are exploited to study the evaporation flux when viscous effects stabilize the
front. In particular, we discuss the possibility of nontrivial behaviors, i.e., drying rates not scaling as 1/At for
drying under constant external conditions.@S1063-651X~99!06811-7#

PACS number~s!: 47.55.Mh, 64.60.Ak, 64.70.Fx
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I. INTRODUCTION

Drying of capillary porous media has been the object o
large number of studies@1–4#, and references therein, sinc
the pioneering work of Ceaglske and Hougen@5#. Most of
these have been conducted within the framework of the c
tinuum approach to porous media. More recently,@6–8#, it
has been shown that drying could be also studied within
framework of the discrete approach@9#. In this context, it
turns out that invasion percolation~IP! concepts can be use
to analyze slow drying. Invasion percolation models ha
been used extensively to study slow drainage in porous
dia @10,11#, and as, at least at first glance, drying can
viewed as an invasion of the materials by gas, the releva
of invasion percolation concepts in drying isa priori not
surprising. However, there are important differences betw
drainage and drying due to the additional effect of m
transfer in the gas phase in drying. As a result, there
original features in drying that are worth analyzing as a s
cial class of IP process. As explained in Ref.@8#, the phase
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PRE 601063-651X/99/60~5!/5647~10!/$15.00
a

n-

e

e
e-
e
ce

n
s
re
-

distribution patterns, and thereby the drying rates, depend
the interplay between the capillary, gravity, and visco
forces. When gravity or viscous forces are not negligib
one obtains phase distributions that can be analyzed in te
of invasion percolation in a gradient~IPG! @12–14#, i.e., IP
in a field where the percolation probabilityp has a spatial
gradient. As discussed in Ref.@11#, one can distinguish two
main IPG patterns depending on whether invasion is in
stabilizing gradient ~IPSG! or a destabilizing gradien
~IPDG!, respectively. In drying, there is a number of situ
tions that leads to IPDG patterns. For instance, surface
sion gradients induced by composition or temperature gr
ents can lead to IPDG patterns,@15#. As in drainage,@14,16#
gravity effects can lead to IPDG as well as IPSG patte
depending on the fluid density ratio and the main direction
the invasion with respect to the gravity vector direction,@8#.
As explained below, viscous effects lead only to IPSG p
terns in drying. In this paper, we concentrate on IPSG s
ations induced by stabilizing gravity or viscous effec
These situations are characterized by the formation of st
fronts. In this context, the main objectives of this paper a
first, to characterize the front width and the front global ma
transfer coefficient. Then it is shown how these elements
5647 © 1999 The American Physical Society
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5648 PRE 60M. PRAT AND F. BOULEUX
be used to predict the drying rates. Transient situations, c
acterized by traveling fronts, as well as stationary situati
are studied. The scaling law derived for the overall fro
width holds in two dimensions, and most of the other resu
reported here are based essentially on numerical simula
on a two-dimensional~2D! square lattice and therefore a
pertinent only for 2D cases. This is certainly a limitation
the present study, that can be considered as a first ste
ward the full study of drying within the discrete approa
framework. It should be noted, however, that there exist
systems of practical importance. Fractures and static s
are just two examples of such systems. Also, as in sev
previous studies@6–8#, we consider the simplest drying situ
ation in which thermal effects can be disregarded. The w
ting fluid is the liquid that evaporates. The effects of liqu
films that can carpet the pore walls after an invasion of
pore bulk by the gas phase are ignored. The liquid films m
however, significantly affect the drying rates under cert
circumstances~pores and throats with corners or mark
roughness inducing secondary capillary effects! @17#. The
system investigated is depicted in Fig. 1. There is a
evaporation mass transfer from the interstitial liquid-gas
terfaces toward the bulk gas surrounding the porous med
The liquid phase is assumed to consist of a single compo
liquid, so that additional complications due to liquid comp
sition variations can be ignored. The gas phase is a bin
mixture consisting of the vapor of the liquid, componentA,
and an inert component, componentB. The total pressure o
the gas mixture is assumed to be constant. The mass tra
process in the gas phase is therefore determined by th
nary diffusion of A. As thermal effects are negligible, th
equilibrium concentration, denoted byce , of componentA at
the liquid-gas interfaces remains constant. This is a con
quence of the simplifying assumption that the curvature
the interface is sufficiently large so that the Kelvin effect
neglected. We also assume that the density of the gas p
is negligible compared to the liquid density. Finally, we co
sider the case where the porous medium is initially co
pletely saturated by liquid.

II. PHASE DISTRIBUTIONS

In this section we briefly discuss the various structures
the phase distributions that can be expected depending o

FIG. 1. Sketch of the situation studied.
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relative influence of the capillary, gravity, and visco
forces. As explained above, the analysis is restricted to
and IPSG situations. In this section, we make use of ma
scopic concepts, while in Sec. V, using IP concepts and
sults presented in this paper, a more refined study is
sented for 2D geometries. The idea is to compare the sizL
of the porous medium sample~Fig. 1! to a characteristic
lengthLg of a gravity front and to a characteristic lengthLcap
of a viscous front.Lg represents the distance over which t
pressure differencedPh , due to gravity, becomes compa
rable to the pressure jumpPc at a meniscus due to capillar
ity. This can be expressed as

dPh5rLLgg5Pc'
2g cosu

r̄
, ~1!

whereg is the surface tension,u the wetting angle, andr̄ is
an average pore size.rL is the liquid density, andg the
acceleration of gravity. Therefore,

Lg

r̄
'B21, ~2!

where B is the Bond number, defined here asB21

52g cosu/r̄2rLg ~the Bond number describes the relative im
portance of gravity over capillary forces!. Lcap represents the
distance over which the pressure difference due to visc
effects becomes comparable toPc . If k is the porous me-
dium permeability, one can expressLcap as @8#

Lcap

r̄
'

k

r̄ 2 Ca21, ~3!

where the capillary number Ca, which characterizes the c
petition between the viscous and the capillary forces, is
fined by Ca2152g cosu/mLv, wherev is a characteristic liq-
uid filtration velocity andmL is the liquid dynamic viscosity.
One problem is to definev. Another is to take into accoun
the fact thatv diminishes during the process. Here we ide
tify v with the filtration velocity at the onset of the proces
Under these circumstances, one may definev as

v5e/rL , ~4!

wheree is the evaporation flux density. As under standa
constant external drying conditionse decreases during th
process,Lcap progressively increases. Therefore, in som
cases, one may haveLcap,L, and therefore a viscous front a
the beginning of the process, whereas laterLcap may become
larger thanL, which corresponds to a capillarity-dominate
regime.

III. GRAVITY STABILIZED DRYING FRONTS

A. Overall front width

The structure of drainage fronts stabilized by gravity w
first studied by Wilkinson@18#, and subsequently in severa
papers@12,14#. These works confirmed the main results
Wilkinson. First, the structure of the front is significant
different in two and three dimensions~see Ref.@13# for the
3D case!. In two-dimensions, the front widths can be de-
fined by
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s25

E
0

`

~zc2z!2pf~z!dz

E
0

`

pf~z!dz

,

wherezc is the mean position of the front,

zc5

E
0

`

zpf~z!dz

E
0

`

pf~z!dz

,

andpf(z) is the probability of finding one site of the front a
z. As discussed, for instance, in Ref.@14#, it is found that the
front width s scales as

s}B2n/~11n!, ~5!

wheren is the correlation length exponent. This leads tos
}B20.57 in two-dimensions. This length scale in fact chara
terizes the width of the fractal region of the front around t
mean front positionzc . It is also of interest to consider th
overall extent of the front, which is the perpendicular d
tance between the front most advanced and least adva
points. More precisely, we are interested in the mean va
of this distance~the overall extent itself is a stochastic va
able whose standard deviation is decreasing to zero with
ratio of front width to lattice size!. This mean width is noted
hereafter byl. l corresponds in fact to the width of the tra
sition zone discussed in Ref.@18#. Using arguments simila
to the ones used for obtaining Eq.~2!, Wilkinson showed
that the width of this zone should scale asB21. To derive
this scaling, he assumed that the capillary pressure at the
and at the bottom of the transition zone was independen
B. This assumption is not valid in two dimensions. In wh
follows, the correct 2D scaling is derived. We start from t
following relation first derived by Wilkinson@18#, and ex-
tended here by taking into account the influence of the wi
of the bond size distribution

Sw* 2Sw}S B

S D ~11b!/~11n!

, ~6!

in which B is the Bond number,Sw* the wetting fluid residual
saturation forB50, andSw the residual saturation at finit
Bond number.b is the percolation probability exponent„for
simplicity, we assume a uniform bond width distribution
the range@r min ,rmax# with S5(r max2rmin)/a, wherea is the
lattice spacing…. If q is the fraction of the bond that is occu
pied by the wetting fluid at the residual saturation, Eq.~6!
indicates that

q* 2q}S B

S D ~11b!/~11n!

. ~7!

In terms of the fractionp of the bond occupied by the non
wetting fluid, one therefore has

p2p* }S B

S D ~11b!/~11n!

. ~8!
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As mentioned above, a uniform bond width distribution
the range@r min ,rmax# is assumed, hencep5@(r max2r)/aS#.
In terms of bond width, one has, consequently,

r * 2r}SS B

S D ~11b!/~11n!

. ~9!

In the equation above,r can be viewed as the size of th
narrowest bonds that are invaded. It is well known that in
absence of gravity forces the invasion percolation proc
leads to invasion of bonds in the range@r c2r max#, wherer c
corresponds to the lattice percolation thresholdpc . In the
presence of gravity forces, Eq.~9! indicates that the lower
bound of the invaded bond sizes decreases asB increases.
This also indicates that in factr * 5r c . As the total width of
the front ~defined as the perpendicular distance between
front most advanced and least advanced points! is deter-
mined from the equilibrium between the capillary forces a
the gravity forces, one deduces~we know from Ref.@19# that
the mean position of the front corresponds tor c!

l'2B21~r 212r c
21!. ~10!

Then a Taylor expansion ofr 21 leads to

l'2B21
~r c2r !

r c
2 . ~11!

Taking into account Eq.~9!, one finally obtains

l}
2

r c
2 S B

S D 211@~11b!/~11n!#

. ~12!

This scaling has been checked numerically. Using the s
dard invasion percolation algorithm and the invasion pot
tial defined for taking into account stabilizing gravity force
@7,8#, simulations were performed for six realization of
square 4003400 network. For each realization, the me
front thicknessess and l were determined for 12 differen

FIG. 2. Front widths and front width l as a function of the
Bond number. The slopes of the straight lines are20.5738
60.0017 fors and20.518760.0025 forl, in excellent agreemen
with the theory. These results were obtained with square lattice
size 4003400.
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5650 PRE 60M. PRAT AND F. BOULEUX
values of the Bond number, whileS was kept constant. The
results are shown in Fig. 2. The slopes reported in Fig. 2
in excellent agreement with the expected scaling fors, i.e.,
20.57, and the scaling given by Eq.~12!, i.e., 20.52. The
influence of the width of the bond distributionS was also
checked by varyingS for a given Bond number and th
results~not reported in this paper! are in excellent agreemen
with the theoretical predictions~the fact that increasingS has
an effect which is equivalent to an increase in capillarity w
mentioned in Ref.@11#!.

B. Transient case

In the transient case, the mass transfer between the po
medium and its surroundings takes place only through
top side of system. The bottom and lateral sides are im
vious. A typical phase distribution for this case is shown
Fig. 3. Note the disconnected liquid clusters in the front
gion. The phase distribution depicted in Fig. 3 was obtain
by means of a pore network simulation based on the dry
model proposed in Ref.@7#, and subsequently validated b
comparison with experiments as reported in Ref.@8#. This
pore network drying simulator, which was described in s
eral papers~cf. Refs. @7# and @8#! can be summarized a
follows: ~1! every cluster present in the network@a square
lattice of sites~pores! and bonds~throats! of random width
was used# is identified;~2! the bond connected to the alread
invaded region which has the lowest invasion potentia
identified for each cluster;~3! the evaporation flux at the
boundary of each cluster is computed;~4! for each cluster,
the mass loss corresponding to the evaporation flux de
mined in step~3! is assigned to the bond identified in ste
~2!; ~5! the bond~as well as the adjacent pore! eventually
invaded is that which is the first to be completely drain
among the bonds selected in step~2!; and ~6! the phase dis-
tribution within the network is updated. The evaporation fl
@step ~3!# is determined from the computation of the mol
fractions in the vapor phase. The invasion potential m
tioned in step~2! is defined as the difference between t
threshold capillary pressure of the bond and the pressure
ference across the meniscus located in that bond,
Q( l,z)5(2g/r l)2@Pg2Pl(z)# wherer l is the radius of the
bond ~throughout this paper a perfectly wetting liquid is a
sumed!. The total pressure in the gas phasePg is assumed to
be constant, while the liquid pressure (Pl) distribution re-
mains hydrostatic. As indicated above, vapor was allowe
escape through the top edge of network. Zero flux conditi
were imposed on the three remaining edges. This simul
was used to study the average properties of the front.

FIG. 3. Numerical simulation of a stabilized drying front on
square lattice of size 2003200. The liquid phase is in black, the ga
phase in light gray. Note the disconnected clusters.
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1. Front global mass transfer coefficient

The objective is to characterize the average mass tran
by molecular diffusion between the front region and the t
edge of network. Generally in drying, the external trans
resistance becomes negligible compared to the transfer r
tance within the materials once a dry zone is created wit
the medium. Here, for simplicity, we consider a negligib
external transfer resistance, i.e.,c'0 atz50 when there is a
dry zone. During the period between two pore invasions,
vapor concentration field in the gas phase within the por
medium corresponds to the quasisteady solution with
equilibrium concentration imposed at each meniscus. Thi
due to the fact that the typical time scale of diffusion ove
distance of the order a pore length is very short compare
the overall duration of the drying process. Figure 4 shows
typical structure of the vapor concentration field in the g
phase in our problem. The isoconcentration lines become
and unperturbed sufficiently away from the front region. Th
type of situation was considered in detail in Ref.@20# for
self-affine interfaces. The global mass transfer coeffici
was evaluated by studying the position of the equival
smooth boundary leading to the same unperturbed far fiel
for the self-affine interface. By employing the same conce
we studied the positiond of the smooth line at uniform con
centrationce leading to the same concentration field in t
far field as for the drying front. Practically this means that
one is interested only in the evaporation flux, one could
place the irregular front by a straight line at concentrat
ce . More precisely we have studied the position of this li
with respect to the mean position of the frontzc , i.e., d
2zc . This amounts to define the global mass transfer co
ficient Y of the front as

F5Yce5rvD* bW
ce

d
, ~13!

whererv is the gas phase density,b is the thickness of the
porous medium andW its width, F is the evaporation flux,
andD* is the effective diffusivity coefficient of the porou
medium as defined in standard continuum models.

In order to make use of Eq.~13!, D* must be computed
through pore network simulation. For the considered n

FIG. 4. Example of vapor concentration distribution in the g
phase~the front is the one depicted in Fig. 3!.
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PRE 60 5651DRYING OF CAPILLARY POROUS MEDIA WITH A . . .
work we foundD* 50.21D whereD is the binary molecular
diffusion coefficient for the gas mixture. Insight into the a
erage behavior of the system is obtained from pore netw
simulations for 50 realizations of a 2003200 network. It
should be noted that it becomes rapidly very tedious to
networks larger than 2003200 because of the concentratio
field computation that requires the solution of a linear syst
after each invasion~we used a conjugate gradient method
a workstation!. For each realization, nine values of the Bo
numbers were considered. We have first checked that
correct scaling forl and s with the Bond number was ob
tained with this series of front. We found211@(11b)/(1
1n)#520.51460.008 and n/(11n)50.57360.009,
which are in very good agreement with the expected val
~0.52 and 0.57, respectively!. The theoretical prediction o
the scaling ofY is not straightforward here because of t
presence of the disconnected clusters. We know from

FIG. 5. Position of the equivalent smooth line as a function
the Bond number. The slope of the straight line is 0.23060.009.
The dashed lines represent61 standard deviations ofzc2d ob-
tained in numerical simulations. These results were obtained
square lattices of size 2003200.

FIG. 6. Evolution ofzc2d as a function ofzc . The results of
ten realizations are plotted~nine different values of the Bond num
ber were considered for each realization!. zc2d reaches its estab
lished value whenzc is about equal to 103(zc2d). These results
were obtained with square lattices of size 2003200.
rk
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work of Wilkinson @18#, that the maximum sizeLmax of the
clusters decreases with the bond number asLmax}B2n/(11n).
We also know that many menisci are not active in terms
evaporation. Only the menisci located at the external bou
ary of the transition zone are active. Although it would the
fore probably be interesting to study the statistical proper
of the rough interface corresponding to the active menisc
a function of the Bond number, here we simply tried to co
relate the evolution ofY ~or, equivalently,zc2d! to the Bond
number variations. Not surprisingly, we obtained thats
,(zc2d), l /2. Regarding the Bond number dependen
we found, as shown in Fig. 5, that

~zc2d!5mS B

S D 2l

, ~14!

with l50.62860.007, and wherem is a numerical prefactor
This scaling corresponds to the drying period during wh
the front is established as explained below.

f

th

FIG. 7. Evolution oflu.z. / l as a function of the Bond number
Each symbol~s! corresponds to the average value oflu.z. / l over 50
realizations. The dashed lines represent61 standard deviations o
lu.z. / l obtained in numerical simulations. These results were
tained with square lattices of size 2003200.

FIG. 8. Front overall saturationSas a function ofB. Each sym-
bol ~s! corresponds to the average value ofS over 50 realizations.
The dashed lines represent61 standard deviations ofS obtained in
numerical simulations. These results were obtained with square
tices of size 2003200.
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5652 PRE 60M. PRAT AND F. BOULEUX
2. Average drying rates

We are now in a position to model the average dry
rates. Two phases may be distinguished:~1! an initial phase
before the establishment of the front, and~2! a second phase
when the front is established andY reaches a constant valu
As shown in Fig. 6, the second phase is reached appr
mately whenzc'10(zc2d). Hereafter, we consider the se
ond phase. For a given Bond number, the overall saturatioS
of the transition zone, i.e., the average saturation in the
gion included between the most advanced point of the fr
most and least advanced points of the liquid distribution i
constant~due to disconnected clusters, this region may ba
priori expected to be slightly larger than the front widthl. If
lu.z. is the width of this region, defined as the perpendicu
distance between the most advanced point of the front
the least advanced point of the liquid distribution, the sim
lations indicates thatlu.z. / l'1.1 regardless of the Bond num
ber value as reported in Fig. 7!. As a matter of fact, the
simulations indicate a weak dependence ofS with B as
shown in Fig. 8. Throughout this paper, variations ofS with
B, if any, are ignored. The mass balance for the travel
front can be expressed as

rL«SWb
dzc

dt
5F, ~15!

where« is the porosity of the porous medium. Taking in
account Eqs.~13! and ~14!, this leads to the equation

0.5zc
22mS B

S D 2l

zc1C5
rvD* ce

«SrL
t, ~16!

whereC is a constant@at t50, one should havezc'10(zc
2d)#. This leads to the classic behaviorF}t21/2 since in
fact asm(B/S)2l is O( l) and zc.10(zc2d) ~front estab-
lished! the second term on the left hand side of Eq.~16! is
negligible.

IV. VISCOSITY STABILIZED DRYING FRONTS

A. Transient case

1. Shaw’s experiment

To the best of our knowledge, Shaw@6# was the first to
study drying within the framework of percolation when vi
cous effects are important. He showed that viscous eff
lead to the formation of a stable traveling fractal front. If w
note that in drying the displacing phase~gas! is less viscous
than the displaced phase~liquid!, then in a direct analogy
with the corresponding drainage pattern we would expect
a stable front but viscous fingering~see Ref.@21#!. In drying,
however, the average velocity in the liquid tends to be
rected toward the inlet~and not toward the outlet as in drain
age!. As a result, the pressure gradients stabilize the fr
similarly to the way hydrostatic pressure gradients indu
by gravity lead to a stabilized invasion front. Therefore, IP
can be used to determine the behavior of the front widths as
a function of the capillary number Ca5nm/g. In drainage,
Wilkinson @18# obtained thats scales as Ca2n/(t2b111n)

where t, b, and n are the conductivity, percolation
probability, and correlation length exponents, respective
i-

e-
t

a

r
d

-

g

ts

ot

i-

t
d

.

In drying, however, there is no pressure gradient in the d
placing phase. As discussed by Shaw@6#, this leads to a
different scaling, i.e.,s}Ca2n/(11n). Shaw @6# conducted
two-dimensional experiments with packings of very sm
spheres ~0.5-mm diameter!, and found an exponent o
20.4860.1 which despite the scatter in the experimen
data was significantly lower than the theoretical predict
2n/(11n)520.57 in two dimensions. Shaw@6#, however,
used the overall front widthl as defined in Sec. III A, and no
s, to characterize the front width. He assumed that the s
ing for the overall front width was the same as fors, i.e.,
Ca2n/(11n). From the result of Sec. III A, the correct scalin
is in fact l}Ca21(11b)/(11n). This gives a value of20.52 in
two dimensions, instead of20.57, which is significantly
closer to the experimental value~20.48! determined by
Shaw. Although the theoretical prediction is now closer
the experimental value, the theoretical exponent of20.52 is
still somewhat larger than the exponent of20.48 found by
Shaw. As stated by Shaw, this may be due to possible p
sure gradient variations across the width of the front. T
issue is discussed further in Sec. V. It may be also put
ward that the porous medium used by Shaw is not stric
2D. The images presented in Shaw’s paper are, howe
typical of 2D invasions and therefore, we conclude that
effects, if any, are most probably negligible.

2. Drying rates

One interesting feature of viscous fronts under const
external transfer condition is that their extent increases as
front moves within the materials. This may be expected
lead to nontrivial behavior of the drying rates, i.e., dryin
rates not scaling with the time as 1/At. In order to develop
some predictions regarding the drying rate, we must fi
address the problem of the reference velocity in the liqu
As mentioned above, our idea is to consider that the pres
gradient induced by the viscous forces in the liquid play
role analogous to the hydrostatic pressure gradient~when
gravity effects control the extent of the front!. This leads

FIG. 9. Evolution of the fractional evaporation fluxf
5Fm.c./F as a function of the Bond number. Each symbol~s!
corresponds to the average value off over 50 realizations. The
dashed lines represent61 standard deviations off obtained in nu-
merical simulations. These results were obtained with square
tices of size 2003200.
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PRE 60 5653DRYING OF CAPILLARY POROUS MEDIA WITH A . . .
naturally to a consideration of scaling identical to that o
tained for the gravity case, but where the capillary num
replaces the Bond number@18#. An obvious candidate is the
average evaporation velocityve5F/(rLWb). However, if
one considers the fact that the evaporation is due, on the
hand, to the evaporation at the boundary of the disconne
clusters and, on the other hand, to the evaporation at
boundary of the main cluster, it is physically more appeal
to consider vD5Fm.c./(rLWb) as a reference velocity
whereFm.c. is the evaporation flux at the boundary of th
main cluster. We must now consider how the fractional fl
f 5Fm.c./F scales as a function of Ca. The behavior fou
on the basis of the numerical simulations is shown in Fig
It can be expressed as

f }Bx, ~17!

with x50.23060.009. Therefore, in the case of a visco
front we expect

f 5nS Ca

S D x

, ~18!

with Ca5vDmL /g, andn is a numerical prefactor.
We are now in a position to determine the evolution of t

drying rates. A mass balance leads to the following equat

2@1.1~S21!10.6#
dl

dt
1

dzc

dt
5

rvD* ce

rL«d
. ~19!

Using a2/D* as reference time, anda as a reference length
Eq. ~19! can be written

2@1.1~S21!10.6#
dl

dt
1

dzc

dt
5Md21, ~20!

where l, zc , d, and t are now dimensionless andM
5rvce /rL«.

Combining the Eqs.~18!–~20! leads to the following
equation ford:

d
dd

dt
2@1.1~S21!10.6#Fn8aNa/~x21!

12x Gda/~12x!
dd

dt

1Fm8lNl/~x21!

12x Gdl/~12x!
dd

dt
5M , ~21!

whereN5nrvD* cemL /aSg. In Eq. ~21!, n8 andm8 are the
numerical prefactors corresponding to the scaling ofzc2d
and l, i.e. zc2d5m8(Ca/S)2l and l5n8(Ca/S)2a, with
a512@(11b)/(11n)#50.52. Finally, the evolution ofd
as a function of time can be determined by solving the eq
tion

0.5d22@1.1~S21!10.6#

3F n8aNa/~x21!

@11a/~12x!#~12x!Gda/~12x!11

1F m8lNl/~x21!

@11l/~12x!#~12x!Gdl/~12x!115M ~ t2t0!1C,

~22!
-
r

ne
ed
he
g

x

.

n:

a-

where @a/(12x)#11'1.7 and@l/(12x)#11'1.8. t0 is
the time associated with the establishment of the front.C is a
constant@for t5t0 , we must havezc'10(zc2d) according
to Fig. 6#. With these values for the exponents, Eq.~22!
indicates that the first term on the left-hand side of Eq.~22!
dominates for long times. In this case, a classical behavio
obtained, i.e., drying rates scale as 1/At. One interesting
problem is to determine the influence of the second and t
terms on the left-hand side of Eq.~22! before the first one
starts to dominate. To explore this issue, we must first re
that Eq.~22! is valid only for the established front, i.e., whe
zc>10(zc2d). Assuming a negligible external transfer r
sistance, it is not difficult to show that the position of th
equivalent smooth linedc for which we havezc510(zc2dc)
is dc5(10m8N2l/(12x))@(12x)/(12x2l)#. Substituting
this expression ford into Eq. ~22! shows that the third term
depends only on the values of the exponents and the fa
10 in the relationzc510(zc2dc). With the values found for
the exponents, it is obtained that the third term is about
times smaller that the first one ford5dc . The magnitude of
the second term depends on the exponents, the prefactorn8,
m8, andN, which depends on the fluid considered and on
lattice spacing. If we use the values of the prefactors dedu
from our numerical simulations and consider, for instance
porous medium saturated by water for ordinary laborat
conditions (T'20 °C) and pore size in the usual rangea
'102321 mm), we can conclude that the second term
negligible compared to the two other terms. Therefore, o
concludes that in fact the drying essentially proceeds w
the 1/At law when Eq.~22! holds†note that the exponent o
the third term on the left-hand side of Eq.~22! is relatively
close to 2„@l/(12x)#11'1.8…‡. It should be noted, how-
ever, that it is possible to have a viscosity-controlled expa
ing front in a porous sample without reaching the regim
associated with Eq.~22!. For instance, for a lattice spacin
a510mm and water at 20 °C, the values of the prefacto
deduced from our simulations andS50.9, one findsdc

FIG. 10. Sketch of the stationary case.
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5654 PRE 60M. PRAT AND F. BOULEUX
'60 000 ~in lattice units!, i.e., dc'600 mm. This corre-
sponds tozc'666 mm andl'90 mm, whereas, when th
front forms,zc and l are of the order of a few tens of lattic
unit, i.e.,O(0.1 mm). This case corresponds to the portion
the curves in Fig. 6 where (zc2d)/(zc2d)min varies quickly.
Also in this case, the third term on the left-hand side of E
~22! is not small compared to the first one. This can le
therefore, to nontrivial behavior, i.e., drying rates not scal
as 1/At.

B. Stationary case

In this section, we consider a situation where the dry
front reaches a stationary position. This can be obtai
when the evaporation flux is exactly balanced by the liq
flow feeding the porous medium. This type of situation
sketched in Fig. 10. For a given system~porous medium plus
fluids plus external transfer conditions!, the pressure in the
liquid at the entrance of the porous medium must be i
certain range for the front to reach a stationary posit
within the porous domain. As for the transient cases,
occurrence of the steady evaporation regime depends on
interplay between the gravity, viscous, and capillary forc
In what follows, we consider the case where the grav
forces can be ignored and, therefore, where the proces
controlled by only the capillary and viscous forces. This isa
priori the most interesting case because of the dependen
the overall front thickness with the capillary number, i.e.,
fact with the entrance pressure. Since we are only intere
in a stationary front, we assumed that all disconnected c
ters have disappeared when the stationary regime is reac
This is what is expected within the framework of the a
sumptions of the present work~see Sec. I!, since there is no
feeding mechanism of a disconnected cluster that could
ance the evaporation flux at the boundary of such a clus
This is in fact directly associated with the assumption
negligible liquid film flows.

Similarly to the transient case, we define the front glo
mass transfer coefficientY by

FIG. 11. Stationary case. Evolution of the equivalent smo
line as a function of the Bond number. Each symbol correspond
the average over 50 realizations. These results were obtained
square lattices of size 4003400.
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F5Yce5rvD* bW
ce

d
, ~23!

whered is the position of the smooth line at uniform con
centrationce leading to the same concentration field in t
far field as for the drying front. From the consideration of
somewhat analogous problem in Refs.@22# and @23#, one
expects

~zc2d!'s. ~24!

This result was confirmed by numerical simulation as d
picted in Fig. 11. The results shown in Fig. 11 were obtain
for 4003400 networks. Fifty realizations for ten differen
values of the Bond number were considered. It should
noted here that the stationary case is much less demandi
terms of computation. Each front is in fact generated by
invasion percolation algorithm~including gravity effects!.
Then the disconnected clusters are removed, and the v
concentration distribution is computed. In contrast with t
transient case, that requires the computation of the va
concentration field after each invasion, only one computat
of this field is performed in the stationary case. This make
possible to consider large networks.

When the front reaches its stationary position, the fl
rate Q through the liquid zone is equal to the evaporati
flux,

Q5r lvDWb5F, ~25!

wherevD is the filtration velocity. Making use of Darcy’s
law, the pressure variation in the liquid zone can be
pressed as

Pe5Pl~zmax!1
mLvD

k
@L2~ l1zmin!#, ~26!

wherek is the permeability. The pressure variation within t
front betweenzmax andzc can be expressed as

h
to
ith

FIG. 12. Stationary case. Front global permeabilitykf as a func-
tion of the Bond number.k is the permeability of the network. Eac
symbol corresponds to the average over 50 realizations. Thes
sults were obtained with square lattices of size 4003400.
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Pl~zmax!2Pl~zc!5
mLvDl

2kf
, ~27!

where kf is the global front permeability betweenzc and
zmax. As the liquid phase distribution is compact, one e
pects thatkf is not very different fromk. As shown in Fig.
12, the numerical simulations indicate that

kf5k. ~28!

The pressure in the liquid atzc can be related to the capillar
pressurePc at zc . For uniform bond size distributions be
tweenr min and r max, we can expressPc at zc as

Pc~zc!5Pg2Pl~zc!5
2g

r c
, ~29!

where r c is given bypc5@(r max2rc)/S# in which pc is the
percolation threshold of network.

Combining the above equations leads to

L2s5vD
21FrvD* ce1re

k

mL
~Pe2Pg1Pc!G , ~30!

which shows that the filtration velocity, i.e., the evaporati
flux, is a nonlinear function of the pressure differenceDP
5Pe2Pg , since there is a power dependence betweens and
vD@s}(Ca/S)2n/(11n)#. Naturally, this nontrivial behavior
is obtained provided thats is not too small compared toL.
As shown in Fig. 13, Eq.~24! holds for zc>20s, i.e., d
>19s. 2003200 networks were used for obtaining the r
sults depicted in Fig. 13. Therefore, we conclude thats is in
fact necessarily small compared toL when Eq.~30! is valid.
As a result, nontrivial behaviors can be expected essent
for the nonestablished regime, i.e., beforezc2d reaches its
asymptotic values. For given fluids, geometry, and gas pre
surePg , one can also determine the entrance pressure ra
@Pemin,Pemax# for which a front will be observed within the

FIG. 13. Stationary case. Evolution ofzc2d as a function ofzc .
The results of ten realizations are plotted~ten different values of the
Bond number were considered for each realization!. zc2d reaches
its established value whenzc is about equal to 20s. These results
were obtained with square lattices of size 2003200.
-

lly

-
ge

porous domain, and Eq.~30! is valid. Thus,Pemin corre-
sponds to the position of the smooth equivalent linedmin
given by the equation

dmin519j S rvD* cemL

rLgSdmin
D 2n/~11n!

, ~31!

where j is the numerical prefactor in the scaling ofs, i.e.,
s5 j (Ca/S)2n/(11n). Oncedmin is determined,Pemin is eas-
ily determined by combining Eqs.~23!, ~25!, and ~30!. To
determinePemax, one must first determine how far from th
exit should the front be located for Eq.~28! to hold. The
simulations indicate that Eq.~28! holds until the front
reaches the exit, i.e.,zc5L2 l/2, i.e.,dmax5L2l/22s. dmax
can then be determined by an equation similar to Eq.~31!.
Oncedmax is determined,Pemaxcan be determined in a simi
lar manner asPemin.

V. DISCUSSION

A. Influence of pressure gradient variation in the liquid

As mentioned in Sec. IV A, the scaling in terms of th
capillary number is based on the assumption that the pres
gradient is constant across the width of the front, in dir
analogy with the situations where the pressure gradien
induced by the gravity forces. We made an attempt to
plore the influence of possible pressure gradient variati
across the front width when the gradients are induced by
viscous forces. To this end, we performed a series of p
network simulations including the computation of the pre
sure fields in the liquid. The results can be found in R
@24#, and are not reported here. We found that the press
gradient is indeed not constant. It tends to be greater in
region of the front located closer to the dry zone. We a
explored the scaling ofs and l in terms of the capillary
numbers. A correction to scaling was found forl ands. The
exponents20.55 for l and 0.59 fors drawn from the simu-
lations are slightly greater than the exponent20.52 and
20.57 corresponding to a constant pressure gradient. T
simulations were performed over 4003400 networks. This
issue would deserve to be explored further.

B. Phase distribution in two dimensions„transient case…

In two dimensions we can make use of the scaling forl in
order to delineate the various patterns discussed in Sec
According to the results presented in this paper, we have

Lg

a
}B20.52 ~32!

and

Lcap

a
}Ca* ~20.52/0.77!, ~33!

with Ca* 5emL /grL , wheree is the evaporation flux den
sity. On the basis of Eqs.~32! and~33!, it is straightforward
to adapt the considerations of Sec. II.
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VI. SUMMARY AND CONCLUSIONS

In this paper, a model of 2D drying in the presence o
stabilized front has been studied numerically by means
pore network simulations. The width of the front can
characterized by the mean perpendicular distance betw
the most advanced and least advanced points of the front
have shown that this width~l! scales in two dimensions a
l}B211(11b)/(11n), whereb is the percolation probability
exponent, andn is the correlation length exponent, whe
gravity stabilizes the front. It is worth noting that this scalin
relation is of interest not only for the specific drying proble
considered in this paper but also for other situations that
be analyzed in terms of percolation in a gradient~diffusion
front, etc.!. This scaling is in a good agreement with th
experimental result of Shaw@6#.

The global mass transfer coefficient of the front w
quantified for transient situations as well as for situatio
where the front reaches a stationary position within the
rous domain. It was found that the global mass transfer
efficient, characterized by means of the position of
equivalent smooth line at constant concentration, follow
power law dependence with the Bond number, i.e., the p
colation probability gradient. In the stationary case,
found that the location of the equivalent smooth line iszc
2s, wherezc is the average position of the front ands is
the standard deviation of the front point positions. In t
transient case, the positionzc2d of the equivalent line was
found to be located betweenzc2s andzc2 l/2, and to scale
asB20.63. In the transient case, it was also obtained that
g

s
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M

a
f

en
e

n

s
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e
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e

fraction f of the evaporation flux corresponding to the co
tribution of the main cluster was scale dependent,f }B20.23.
These results are valid for the established regimes, i.e., w
the front is located sufficiently away from the surface of t
porous medium.

These results were applied to the viscous case, i.e.,
assumed that the pressure gradients induced by the vis
effects are constant across the front. It was found that n
trivial behaviors could be expected, i.e., drying rates
scaling as 1/At in the transient case, and nonlinear relatio
between the pressure difference and the evaporation flu
the stationary case. However these nontrivial behaviors
essentially expected for the nonestablished regimes, i.e.
fore scaling equations~14! and~17! hold. Although prelimi-
nary results indicate that the assumption of a constant p
sure gradient across the front seems to be satisfactory, fu
work is needed to completely explore this issue.

In the present effort, film flows were neglected. It wou
be interesting to reconsider the problem in the presenc
film flows and also in three dimensions~an insight into dry-
ing in 3D geometries can be found in Ref.@25#, and in the
recent paper by Tsimpanogianniset al. @26#, where a discus-
sion on the viscous effects and a continuum description
the regime upstream of the front was also presented!.
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