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We study a two-dimensional model of drying of capillary porous media when gravity or viscous forces lead
to the formation of a stabilized front. When gravity forces stabilize the front, the mean front width, defined as
the mean perpendicular distance between the front's most advanced and least advanced points, is found
theoretically to scale with the Bond numbBras B=**(1*8)/(1+4) \where B is the percolation probability
exponent and is the correlation length exponent. This scaling is confirmed numerically and is consistent with
the experimental results of Sha®hys. Rev. Lett59, 1671(1987]. The global mass transfer coefficient of the
front is studied numerically. To this end, we study the positign § of the equivalent smooth line leading to
the same evaporation flux as the front. In the transient @ses is found to scale with the Bond numbBr
asB %3 In the stationary case, i.e., when the front reaches a stationary position within the medium, it is
found thatz,— 6~ o whereo is the standard deviation of the positions of the points forming the front around
its mean positiorz, . These results are exploited to study the evaporation flux when viscous effects stabilize the
front. In particular, we discuss the possibility of nontrivial behaviors, i.e., drying rates not scaling'taf®rl/
drying under constant external conditiohS1063-651X99)06811-7

PACS numbgs): 47.55.Mh, 64.60.Ak, 64.70.Fx

[. INTRODUCTION distribution patterns, and thereby the drying rates, depend on
the interplay between the capillary, gravity, and viscous
Drying of capillary porous media has been the object of a&orces. When gravity or viscous forces are not negligible,
large number of studigfsl—4], and references therein, since one obtains phase distributions that can be analyzed in terms
the pioneering work of Ceaglske and Houdén. Most of  of invasion percolation in a gradieftPG) [12-14], i.e., IP
these have been conducted within the framework of the conin a field where the percolation probability has a spatial
tinuum approach to porous media. More recenits8|, it  gradient. As discussed in R¢fl1], one can distinguish two
has been shown that drying could be also studied within thenain IPG patterns depending on whether invasion is in a
framework of the discrete approa¢8l]. In this context, it stabilizing gradient (IPSG or a destabilizing gradient
turns out that invasion percolatidiP) concepts can be used (IPDG), respectively. In drying, there is a number of situa-
to analyze slow drying. Invasion percolation models haveions that leads to IPDG patterns. For instance, surface ten-
been used extensively to study slow drainage in porous mesion gradients induced by composition or temperature gradi-
dia [10,11], and as, at least at first glance, drying can beents can lead to IPDG patteri45]. As in drainage[14,16]
viewed as an invasion of the materials by gas, the relevanagravity effects can lead to IPDG as well as IPSG patterns
of invasion percolation concepts in drying & priori not  depending on the fluid density ratio and the main direction of
surprising. However, there are important differences betweethe invasion with respect to the gravity vector directif8i,
drainage and drying due to the additional effect of mas#s explained below, viscous effects lead only to IPSG pat-
transfer in the gas phase in drying. As a result, there areerns in drying. In this paper, we concentrate on IPSG situ-
original features in drying that are worth analyzing as a speations induced by stabilizing gravity or viscous effects.
cial class of IP process. As explained in Red], the phase These situations are characterized by the formation of stable
fronts. In this context, the main objectives of this paper are,
first, to characterize the front width and the front global mass
*Electronic address: prat@imft.fr transfer coefficient. Then it is shown how these elements can
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VAPOR relative influence of the capillary, gravity, and viscous

OPEN T T T T T T T forces. As explained above, the analysis is restricted to IP
A

EDGE

—

and IPSG situations. In this section, we make use of macro-
scopic concepts, while in Sec. V, using IP concepts and re-
DRY ZONE sults presented in this paper, a more refined study is pre-
8 DISCONNECTED sented for 2D geometries. The idea is to compare thelsize
w CLUSTER . . .
R of the porous medium samplgig. 1) to a characteristic
¥ ‘ lengthL 4 of a gravity front and to a characteristic lendtk,,
of a viscous frontL 4 represents the distance over which the
' pressure differencéPy, due to gravity, becomes compa-
rable to the pressure jump. at a meniscus due to capillar-
V... E S R ity. This can be expressed as

A 4

A

? 2y cosé
SATURATED ZONE 5Ph=p|_ng= P.~ ?, (1)

MAIN
CLUSTER

wherey is the surface tensiorf) the wetting angle, and is

FIG. 1. Sketch of the situation studied. an average pore size, is the liquid density, andy the

. . . . acceleration of gravity. Therefore,
be used to predict the drying rates. Transient situations, char-

acterized by traveling fronts, as well as stationary situations Lg

are studied. The scaling law derived for the overall front ?%B_l, 2
width holds in two dimensions, and most of the other results

reported here are based essentially on numerical simulationgere B is the Bond number, defined here & !

on ? tvv(t)—dlrlnefnsm;re)adZD) Sq‘;’;‘fe _Iattlcet ind thl‘?re.';O:? aref =2y cosdlr?p,g (the Bond number describes the relative im-
pertinent only for cases. 1his Is certainly a imitation o ortance of gravity over capillary forces ., represents the

the present study, that can be considered as a first step tQ: ; X .

ward the full study of drying within the discrete approach ::;’ta?ci over which the pkr)tlassureh(cdl:‘(fe_re?hce due to viscous

framework. It should be noted, however, that there exist 205 1eCts becomes comparable Ry . IS the porous me-
one can express,, as[8]

systems of practical importance. Fractures and static seafdum permeability,

are just two examples of such systems. Also, as in several L K
previous studief6—8], we consider the simplest drying situ- P~ cal, 3)
ation in which thermal effects can be disregarded. The wet- r r

ting fluid is the liquid that evaporates. The effects of liquid . . .
films that can carpet the pore walls after an invasion of thé'\/h(.a.re the capillary number Ca, which characterizes the com-

pore bulk by the gas phase are ignored. The liquid films mayp o . RO
however, significantly affect the drying rates under certainfmed. by .Ca _27.0086/ MLV, wherey IS a charaf;ter]stlc I_|q-
circumstancespores and throats with corners or markedu'd filtration velocity andu, is the liquid dynamic viscosity.

: ; ; One problem is to define. Another is to take into account
roughness inducing secondary capillary effgdts7]. The > . :
system investigated is depicted in Fig. 1. There is a ne1£he fact thatv diminishes during the process. Here we iden-

evaporation mass transfer from the interstitial liquid-gas inify v with the filtration velocity at the onset of the process.

terfaces toward the bulk gas surrounding the porous mediunt"der these circumstances, one may detires
The liquid phase is assumed to consist of a single component
liquid, so that additional complications due to liquid compo-

sition variations can be ignored. The gas phase is a binaryheree is the evaporation flux density. As under standard
mixture consisting of the vapor of the liquid, componént  constant external drying conditioresdecreases during the
and an inert component, compondtThe total pressure of process, L., progressively increases. Therefore, in some
the gas mixture is assumed to be constant. The mass trans ses, one may hatg,,<L, and therefore a viscous front at
process in the gas phase is therefore determined by the Qe beginning of the process, whereas latgy, may become

nary diffusion of A. As thermal effects are negligible, the |arger thanl, which corresponds to a capillarity-dominated
equilibrium concentration, denoted by, of componenA at regime.

the liquid-gas interfaces remains constant. This is a conse-
qguence of the simplifying assumption that the curvature of
the interface is sufficiently large so that the Kelvin effect is
neglected. We also assume that the density of the gas phase A. Overall front width
is negligible compared to the liquid density. Finally, we con-
sider the case where the porous medium is initially coms;,
pletely saturated by liquid.

V=e/p|_, (4)

Ill. GRAVITY STABILIZED DRYING FRONTS

The structure of drainage fronts stabilized by gravity was
st studied by Wilkinsor{18], and subsequently in several
papers[12,14). These works confirmed the main results of
Wilkinson. First, the structure of the front is significantly
different in two and three dimensiorisee Ref[13] for the

In this section we briefly discuss the various structures oD casg. In two-dimensions, the front widtl- can be de-
the phase distributions that can be expected depending on tifieed by

Il. PHASE DISTRIBUTIONS
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J (zc=2)°p(2)dz
. 0
g = - y IOgm(I)
f ps(z)dz 15 4
0
wherez is the mean position of the front, E.?
) :_(6/ 1ol E\E\E\g\ log, (o) i
fo zps(z)dz g
ZC= o) H 05 - -
f pr(z)dz
0
andps(z) is the probability of finding one site of the front at 0.0, >0 oy 3

z. As discussed, for instance, in REf4], it is found that the

. l B
front width o scales as 09,o(B)
—ul(1+v) FIG. 2. Front widthe and front widthl as a function of the
o B ’ (5) Bond number. The slopes of the straight lines ard®.5738

h is th lation | th t This leadsot +0.0017 forg and —0.5187+0.0025 forl, in excellent agreement
wherev 1S the correlation length exponent. IS lea O with the theory. These results were obtained with square lattices of

«B~%%7in two-dimensions. This length scale in fact charac-gj,a 400¢400.
terizes the width of the fractal region of the front around the

mean front positiore . It is also of interest to consider the aAs mentioned above, a uniform bond width distribution in
overall extent of the front, which is the perpendicular dis-the range[r i ,fmad iS assumed, hence=[(r na—r)/as].
tance between the front most advanced and least advancgglierms of bond width, one has, consequently,

points. More precisely, we are interested in the mean value
of this distancgthe overall extent itself is a stochastic vari-
able whose standard deviation is decreasing to zero with the r*—roeX S
ratio of front width to lattice size This mean width is noted

sition zone discussed in Réfl8]. Using arguments similar narrowest bonds that are invaded. It is well known that in the

to the ones used for obtaining E®), Wilkinson showed  gpsence of gravity forces the invasion percolation process
that the width of this zone should scale Bs!. To derive leads to invasion of bonds in the range —r s, wherer,

this scaling, he assumed that the capillary pressure at the tQRyresponds to the lattice percolation threshpld In the

and at the bottom of the transition zone was independent Gfresence of gravity forces, E) indicates that the lower
B. This assumption is not valid in two dimensions. In whatpgund of the invaded bond sizes decreases ascreases.
follows, the correct 2D scaling is derived. We start from theTps also indicates that in fact =r.. As the total width of

following relation first derived by Wilkinsori18], and ex-  the front(defined as the perpendicular distance between the
tended here by taking into account the influence of the widthyont most advanced and least advanced ppiigsdeter-
of the bond size distribution mined from the equilibrium between the capillary forces and
B\ (1+A(L+) the gravity forces, one deducese know from Ref[19] that
s(;l_swoc(§> , (6)  the mean position of the front corresponds tp

(€)

B)(1+g>/(1+u)

l~2B~(rt-r_"h). (10)
in which B is the Bond numbelS}, the wetting fluid residual

saturation forB=0, andS,, the residual saturation at finite Then a Taylor expansion af ! leads to

Bond number g is the percolation probability expone(for

simplicity, we assume a uniform bond width distribution in I%ZB‘l(rC_r) (11)
the rangg r min f mad With = = (r max—rmin)/@, Wherea is the rs

lattice spaciny If q is the fraction of the bond that is occu-
pied by the wetting fluid at the residual saturation, E&).  Taking into account Eq(9), one finally obtains
indicates that

2 (B) ~1+[(A+B)(1+)]
B\ (1+A)/(1+v) Iocr—2 E) 12
*
— = . 7
q q%(z) (7) c

This scaling has been checked numerically. Using the stan-
In terms of the fractiorp of the bond occupied by the non- dard invasion percolation algorithm and the invasion poten-
wetting fluid, one therefore has tial defined for taking into account stabilizing gravity forces
[7,8], simulations were performed for six realization of a
®) square 408400 network. For each realization, the mean
front thicknessesr and | were determined for 12 different

3

B\ (1+A)/(1+w)
p—p* )
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FIG. 3. Numerical simulation of a stabilized drying front on a 120

square lattice of size 200200. The liquid phase is in black, the gas 100
phase in light gray. Note the disconnected clusters.

80
values of the Bond number, while was kept constant. The 60
results are shown in Fig. 2. The slopes reported in Fig. 2 are 407
in excellent agreement with the expected scalingdopr.e., 20
—0.57, and the scaling given by E(L2), i.e., —0.52. The ) ) ‘
influence of the width of the bond distributiadn was also 50 100 150 200

checked by varying® for a given Bond number and the
results(not reported in this papgare in excellent agreement
with the theoretical predictionghe fact that increasing has
an effect which is equivalent to an increase in capillarity was
mentioned in Ref[11]).

FIG. 4. Example of vapor concentration distribution in the gas
phase(the front is the one depicted in Fig).3

1. Front global mass transfer coefficient

The objective is to characterize the average mass transfer
by molecular diffusion between the front region and the top
B. Transient case edge of network. Generally in drying, the external transfer

] resistance becomes negligible compared to the transfer resis-
In the transient case, the mass transfer between the pPoroyg,ce within the materials once a dry zone is created within

medium and its surroundings takes place only through thene medium. Here, for simplicity, we consider a negligible
top side of system. The bottom and lateral sides are impefexternal transfer resistance, i.es 0 atz=0 when there is a
vious. A typical phase distribution for this case is shown indry zone. During the period between two pore invasions, the
Fig. 3. Note the disconnected liquid clusters in the front re-vapor concentration field in the gas phase within the porous
gion. The phase distribution depicted in Fig. 3 was obtainednedium corresponds to the quasisteady solution with the
by means of a pore network simulation based on the dryingquilibrium concentration imposed at each meniscus. This is
model proposed in Ref7], and subsequently validated by due to the fact that the typical time scale of diffusion over a
comparison with experiments as reported in H&i. This  distance of the order a pore length is very short compared to
pore network drying simulator, which was described in sevthe overall duration of the drying process. Figure 4 shows the
eral papers(cf. Refs.[7] and[8]) can be summarized as typical structure of the vapor concentration field in the gas
follows: (1) every cluster present in the netwofk square Phase in our problem. The isoconcentration lines become flat
lattice of sites(pore$ and bondgthroat3 of random width ~ and unperturbed sufficiently away from the front region. This
was usedlis identified;(2) the bond connected to the already tyPe of situation was considered in detail in RE20] for
invaded region which has the lowest invasion potential iSelf-affine interfaces. The global mass transfer coefficient
identified for each clustert3) the evaporation flux at the Was eévaluated by studying the position of the equivalent
boundary of each cluster is computed) for each cluster, smooth bound_ary_leadlng to the same _unperturbed far field as
the mass loss corresponding to the evaporation flux deterr the s_elf-affme m_t_erface. By emp'OV'F‘g the same concept,
. : : . : e we studied the positioé of the smooth line at uniform con-
mined in step(3) is assigned to the bond identified in step : : . o
(2); (5) the bond(as well as the adjacent poreventually cent.ratlonce leading tlo the same cqncentra}Uon field in thg
. : s ! » _far field as for the drying front. Practically this means that, if
invaded r']S LhatdWh'CT IS ':jh(.a first fco b; gomhpletr(]aly d:;_“nedone is interested only in the evaporation flux, one could re-
{ar?tq)aggntv;thionnth?aiee?v(vzﬁk ilg US;?;:S. 'I('h)eteSa[:)o?:\?ior:sﬂuxplace the irregular front by a straight line at concentration

X ) . Ce. More precisely we have studied the position of this line
[step(3)] is determined from the computation of the molar with respect to the mean position of the frazt, i.e., &

fractions in the vapor phase. The invasion potential men-_ z.. This amounts to define the global mass transfer coef-
tioned in step(2) is defined as the difference between theficient Y of the front as

threshold capillary pressure of the bond and the pressure dif-

ference across the meniscus located in that bond, i.e., . Ce
Q(1,2)=(2y/r)~[P4—P\(2)] wherer, is the radius of the P=YG=p,DTOW5, (13
bond (throughout this paper a perfectly wetting liquid is as-

sumed. The total pressure in the gas ph#&gis assumed to  wherep, is the gas phase density,is the thickness of the
be constant, while the liquid pressur®)) distribution re- porous medium andlV its width, ® is the evaporation flux,
mains hydrostatic. As indicated above, vapor was allowed tand D* is the effective diffusivity coefficient of the porous
escape through the top edge of network. Zero flux conditionsnedium as defined in standard continuum models.

were imposed on the three remaining edges. This simulator In order to make use of Eq13), D* must be computed
was used to study the average properties of the front. through pore network simulation. For the considered net-
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° FIG. 7. Evolution ofl,, /I as a function of the Bond number.

FIG. 5. Position of the equivalent smooth line as a function of Each symbolO) corresponds to the average valud of /1 over 50
the Bond number. The slope of the straight line is 0:280009.  realizations. The dashed lines represeuit standard deviations of
The dashed lines represemtl standard deviations af.— & ob- l,.2. /I obtained in numerical simulations. These results were ob-
tained in numerical simulations. These results were obtained witfiained with square lattices of size 20@00.
square lattices of size 26Q00.

work of Wilkinson[18], that the maximum siz& ., of the

work we foundD* =0.21D whereD is the binary molecular clusters decreases with the bond numbet gge<B~ (7).
diffusion coefficient for the gas mixture. Insight into the av- We also know that many menisci are not active in terms of
erage behavior of the system is obtained from pore networRvaporation. Only the menisci located at the external bound-
simulations for 50 realizations of a 2800 network. |t ary of the transition zone are active. Although it would there-
should be noted that it becomes rapidly very tedious to usére probably be interesting to stu.dy the statisti_cal propert_ies
networks larger than 200200 because of the concentration Of the rough interface corresponding to the active menisci as
field computation that requires the solution of a linear systen® function of the Bond number, here we simply tried to cor-
after each invasiofwe used a conjugate gradient method onreélate the evolution of (or, equivalentlyz. — 6) to the Bond
a workstatiop. For each realization, nine values of the BondNumber variations. Not surprisingly, we obtained that
numbers were considered. We have first checked that the (2.~ 6)<I/2. Regarding the Bond number dependence,
correct scaling foil and o with the Bond number was ob- We found, as shown in Fig. 5, that
tained with this series of front. We found1+[(1+ 8)/(1 B
+v)]=-0.514-0.008 and »/(1+v)=0.573:0.009, (ze—8)=m| =
which are in very good agreement with the expected values D

(0.52 and 0.57, respectivelyThe theoretical prediction of with \ = 0.628+ 0.007, and wherenis a numerical prefactor.

the scaling ofY is not straightforward here because of the, . . : . ; :
. This scaling corresponds to the drying period during which
presence of the disconnected clusters. We know from th?he front is established as explained below.

-2
: (14)

1.40 T T T T

1.00 T T T
1.30 - 4
0.80 _
1.20 - i} e e
= 060 rE e |
[2=] \\‘ P G
o 1.10 ] o e
z 0.40 i
= 100 _ :
0.90 B 0.20 _
0.80 L : 4 L 000 1 1 1 1
00 100 200 300 40.0 50.0 0.00 0.05 0.10 0.15 0.20 0.25
2/(2:8) 5
FIG. 6. Evolution ofz.— § as a function ofz.. The results of FIG. 8. Front overall saturatio8as a function oB. Each sym-

ten realizations are plottg@hine different values of the Bond num- bol (O) corresponds to the average valueSadver 50 realizations.

ber were considered for each realizajion,— & reaches its estab- The dashed lines represenil standard deviations @& obtained in
lished value wherz, is about equal to 18 (z.— §). These results numerical simulations. These results were obtained with square lat-
were obtained with square lattices of size 2ADO. tices of size 208 200.
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2. Average drying rates 0.00 . : . : , .
We are now in a position to model the average drying 010 + i
rates. Two phases may be distinguishgd:an initial phase
before the establishment of the front, a2l a second phase -0.20 - ]

when the front is established alYdreaches a constant value.

As shown in Fig. 6, the second phase is reached approxi-&
mately wherz,~10(z.— §). Hereafter, we consider the sec- e; -0.40 -
ond phase. For a given Bond number, the overall satur&ion 2

-0.30

of the transition zone, i.e., the average saturation in the re-° 080T |
gion included between the most advanced point of the front  .o60 - % .
most and least advanced points of the liquid distribution is a '

constant(due to disconnected clusters, this region maybe 070 ¢ i
priori expected to be slightly larger than the front widlthf -0.80 . ‘ ) s s . ‘
l,... is the width of this region, defined as the perpendicular 206 -8 16 14 12 10 08 -06
distance between the most advanced point of the front and log,,(B)

the least advanced point of the liquid distribution, the simu-
lations indicates thdf, , /I~1.1 regardless of the Bond num-

b_er valye as, reported in Fig,).7As a matter Of fact, the corresponds to the average value fobver 50 realizations. The
simulations indicate a weak dependence ®fwith B as  yashed lines representl standard deviations dfobtained in nu-

shown in Fig. 8. Throughout this paper, variationsSofith  merical simulations. These results were obtained with square lat-
B, if any, are ignored. The mass balance for the travelingjces of size 208 200.

front can be expressed as

FIG. 9. Evolution of the fractional evaporation fluf
=®,./® as a function of the Bond number. Each symkol)

d In drying, however, there is no pressure gradient in the dis-
pLeSWb—=®, (15)  blacing phase. As discussed by Shgy, this leads to a
dt different scaling, i.e.,oCa """, Shaw[6] conducted

two-dimensional experiments with packings of very small
spheres (0.5-um diametey, and found an exponent of
—0.48+0.1 which despite the scatter in the experimental

wheree is the porosity of the porous medium. Taking into
account Eqs(13) and(14), this leads to the equation

B| A D*c data was significantly lower than the theoretical prediction
0.522— m( =| z+C= ut, (16)  —v/(1+v)=—-0.57 in two dimensions. Shal6], however,
> eSpL used the overall front widthas defined in Sec. Ill A, and not

o, to characterize the front width. He assumed that the scal-
ing for the overall front width was the same as feori.e.,

Ca V(™). From the result of Sec. Il A, the correct scaling
is in factleCa 1A+ This gives a value 0f0.52 in

two dimensions, instead of-0.57, which is significantly
closer to the experimental value-0.48 determined by
Shaw. Although the theoretical prediction is now closer to
IV. VISCOSITY STABILIZED DRYING FRONTS the experimental value, the theoretical exponent-6f52 is

still somewhat larger than the exponent-66.48 found by
Shaw. As stated by Shaw, this may be due to possible pres-
1. Shaw'’s experiment sure gradient variations across the width of the front. This
issue is discussed further in Sec. V. It may be also put for-
ward that the porous medium used by Shaw is not strictly
D. The images presented in Shaw’'s paper are, however,
ypical of 2D invasions and therefore, we conclude that 3D
effects, if any, are most probably negligible.

whereC is a constanfat t=0, one should have.~10(z.
—6)]. This leads to the classic behavidrct =2 since in
fact asm(B/X) " is O(l) andz.>10(z.— &) (front estab-
lished the second term on the left hand side of Ef) is
negligible.

A. Transient case

To the best of our knowledge, Shdw| was the first to
study drying within the framework of percolation when vis-
cous effects are important. He showed that viscous effect
lead to the formation of a stable traveling fractal front. If we
note that in drying the displacing phaggasg is less viscous
than the displaced phagéquid), then in a direct analogy
with the corresponding drainage pattern we would expect not
a stable front but viscous fingeririgee Ref[21]). In drying, One interesting feature of viscous fronts under constant
however, the average velocity in the liquid tends to be di-external transfer condition is that their extent increases as the
rected toward the inldiand not toward the outlet as in drain- front moves within the materials. This may be expected to
age. As a result, the pressure gradients stabilize the frontead to nontrivial behavior of the drying rates, i.e., drying
similarly to the way hydrostatic pressure gradients inducedates not scaling with the time as\t/ In order to develop
by gravity lead to a stabilized invasion front. Therefore, IPGsome predictions regarding the drying rate, we must first
can be used to determine the behavior of the front widéls ~ address the problem of the reference velocity in the liquid.
a function of the capillary number Gavu/y. In drainage, As mentioned above, our idea is to consider that the pressure
Wilkinson [18] obtained thato scales as Ca/(t"#+1*7) gradient induced by the viscous forces in the liquid plays a
where t, B, and v are the conductivity, percolation- role analogous to the hydrostatic pressure gradiaititen
probability, and correlation length exponents, respectivelygravity effects control the extent of the fronfThis leads

2. Drying rates
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naturally to a consideration of scaling identical to that ob- w

tained for the gravity case, but where the capillary number

replaces the Bond numbEt8]. An obvious candidate is the : VAPOR

average evaporation velocity,=®/(p Wb). However, if f T 1 1 ? T ?

one considers the fact that the evaporation is due, on the on
hand, to the evaporation at the boundary of the disconnecte
clusters and, on the other hand, to the evaporation at the GAS PHASE
boundary of the main cluster, it is physically more appealing

to considervp=®,./(p/Wh) as a reference velocity,
whered, . is the evaporation flux at the boundary of the
main cluster. We must now consider how the fractional flux
f=®,,./® scales as a function of Ca. The behavior found %
on the basis of the numerical simulations is shown in Fig. 9.

It can be expressed as

focBY, 17
with xy=0.230+0.009. Therefore, in the case of a viscous
front we expect z
Ca|¥
f=n SR (18) LIQUID

. . . FIG. 10. Sketch of the stationary case.
with Ca=vpu, /7y, andn is a numerical prefactor.

We are now in a position to determine the evolution of the

drying rates. A mass balance leads to the following equation where[a/(1—x)]+1~1.7 and[N(1-))]+1~1.8. 1, is

the time associated with the establishment of the frGns a
dz. p,D*ce constanffor t=ty, we must have,~10(z.— ) according
—[1.1S-1)+0. 6]*+ q- o es (19  to Fig. 6. With these values for the exponents, E§2)
PL indicates that the first term on the left-hand side of &2)

dominates for long times. In this case, a classical behavior is

Usinga?/D* as reference time, aralas a reference length,

Eq. (19) can be written obtained, i.e., drying rates scale as/tl/ One interesting
problem is to determine the influence of the second and third

dz . terms on the left-hand side of E(R2) before the first one
—[1.14S-1)+0. 6] T + ar Mo (200 starts to dominate. To explore this issue, we must first recall

that Eq.(22) is valid only for the established front, i.e., when
where |, z., 8§, and t are now dimensionless ant¥ z.=10(z,— 6). Assuming a negligible external transfer re-
=p,CelpLE. sistance, it is not difficult to show that the position of the
Combining the Eqgs.(18)—(20) leads to the following equivalent smooth liné, for which we havez,=10(z.— 6,)
equation ford: is 8e=(10m'N"ME=)[(1— x)/(1— x—\)]. Substituting
this expression fob into Eq. (22) shows that the third term
do depends only on the values of the exponents and the factor
dt 10 in the relatiorz,=10(z.— &;). With the values found for
the exponents, it is obtained that the third term is about ten
5M(1,X)d75: M, 21) times smaller that the first one fé= .. The magnitude of
dt the second term depends on the exponents, the prefactors
m’, andN, which depends on the fluid considered and on the
whereN=np,D*ceu /aZy. In Eq.(21), n" andm’ are the  |attice spacing. If we use the values of the prefactors deduced
numerical prefactors corresponding to the scalinggof &  from our numerical simulations and consider, for instance, a
and|, i.e. zz—é=m’(Ca/x) * and I=n’(Ca/X) % with  porous medium saturated by water for ordinary laboratory
a=1-[(1+p8)/(1+v)]=0.52. Finally, the evolution o6  conditions T~20°C) and pore size in the usual range (
as a function of time can be determined by solving the equa~10-3—1 mm), we can conclude that the second term is

’ al(x—1)
n’ aN¢ sel1-0 92

ds {
5 [LUS-1)+0.6]

|:mr)\N)\/()(l)
1-x

tion negligible compared to the two other terms. Therefore, one
5 concludes that in fact the drying essentially proceeds with
0.56°—[1.1(S—1)+0.6] the 1At law when Eq.(22) holds[note that the exponent of
n’ aNex—1) the third term on the left-hand side of E@2) is relatively
X [l+a/(l—X)](l—X)}éa/(l_X)+l close to Z[\/(1—x)]+1~1.8)]. It should be noted, how-

ever, that it is possible to have a viscosity-controlled expand-
ing front in a porous sample without reaching the regime
}6"’(1"(>+1=M(tt0)+c, associated with Eq22). For instance, for a lattice spacing
a=10um and water at 20 °C, the values of the prefactors
(22 deduced from our simulations anBl=0.9, one findsd,

m')\N)\/(X71>
+
[1+NM(1=x)](1—X)
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FIG. 11. Stationary case. Evolution of the equivalent smooth FIG. 12. Stationary case. Front global permeabkityas a func-
line as a function of the Bond number. Each symbol corresponds t§on of the Bond numbetk is the permeability of the network. Each

the average over 50 realizations. These results were obtained wiymbol corresponds to the average over 50 realizations. These re-
square lattices of size 460400. sults were obtained with square lattices of size X4@00.

~60000 (in lattice unitg, i.e., 5.~600mm. This corre- cp:yCe:va*bwc_e, (23
sponds toz,~666 mm andl~90 mm, whereas, when the o

front forms,z. andl are of the order of a few tens of lattice . . . .

unit, i.e.,0(0.1 mm). This case corresponds to the portion of?/N€ré d is the position of the smooth line at uniform con-
the curves in Fig. 6 wherez{— 8)/(z.— &) ir, varies quickly. cent'ratlonce leading tp the same concentratlo_n f|elq in the
Also in this case, the third term on the left-hand side of Eq.far field as for the drying front. Erom the consideration of a
(22) is not small compared to the first one. This can leadS°Mewhat analogous problem in Refg2] and [23], one

therefore, to nontrivial behavior, i.e., drying rates not scaling®<Pects
as 1Aft.

(z.— ) ~0. (24)

B. Stationary case This result was confirmed by numerical simulation as de-
icted in Fig. 11. The results shown in Fig. 11 were obtained

r 400X 400 networks. Fifty realizations for ten different
alues of the Bond number were considered. It should be
noted here that the stationary case is much less demanding in
terms of computation. Each front is in fact generated by the
invasion percolation algorithniincluding gravity effects

- ; .~ Then the disconnected clusters are removed, and the vapor
|IC]UId' at the entrance of the porous med'“”ﬁ must be N &oncentration distribution is computed. In contrast with the
certain range for the front to reach a stationary POSItoN, o hsient case, that requires the computation of the vapor

within the porous domain. As for the transient cases, th%oncentration field after each invasion, only one computation

occurrence of the steady evaporation regime depends on e s ield is performed in the stationary case. This makes it

interplay between the gravity, viscous, and capillary force;possible to consider large networks.

In what follows, we consider the case where the gravit When the front reaches its stationary position, the flow

forces can be ignored and, therefore, where the process | C : :
controlled by only the capillary and viscous forces. Thia is r'gteQ through the liquid zone s equal to the evaporation

priori the most interesting case because of the dependence f(')LfX’
the overall front thickness with the capillary number, i.e., in
fact with the entrance pressure. Since we are only interested
in a stationary front, we assumed that all disconnected clus-
ters have disappeared when the stationary regime is reach
This is what is expected within the framework of the as-
sumptions of the present wofkee Sec.)| since there is no
feeding mechanism of a disconnected cluster that could bal- v
ance _the_ evaporation flux at t_he bour_1dary of such a _cluster. Po=P\(Zya) + HLVD [L—(+2zm], (26)
This is in fact directly associated with the assumption of K
negligible liquid film flows.

Similarly to the transient case, we define the front globalwherek is the permeability. The pressure variation within the
mass transfer coefficient by front betweerg,,,, andz; can be expressed as

In this section, we consider a situation where the dryin§
front reaches a stationary position. This can be obtaine
when the evaporation flux is exactly balanced by the liquid
flow feeding the porous medium. This type of situation is
sketched in Fig. 10. For a given syst¢porous medium plus
fluids plus external transfer conditionghe pressure in the

Q=pvpWb=0, (25

herevy is the filtration velocity. Making use of Darcy’s
aw, the pressure variation in the liquid zone can be ex-
pressed as
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porous domain, and Eq30) is valid. Thus, Pgy, corre-
sponds to the position of the smooth equivalent lifyg,
given by the equation

pyD* Copr

Omin=19j
min ) PLY2 Smin

—vl(1+v)
) : (31

wherej is the numerical prefactor in the scaling of i.e.,

100 o=j(Cal) "+ Oncedn, is determinedP ey, is eas-

0.90 - ) ily determined by combining Eqg23), (25), and (30). To

' determineP¢max ONe must first determine how far from the
exit should the front be located for E28) to hold. The

0'800,0 16'0 26_0 36'0 46,0 50.0 simulations indicate that Eq(28) holds until the front

z /o reaches the exit, i.ez.=L—1/2, i.e., dpax=L—1/12— 0. Smay
can then be determined by an equation similar to B4).

FIG. 13. Stationary case. Evolution nf— é‘_as a function ot . Oncedpayis determinedPgmaxcan be determined in a simi-
The results of ten realizations are plotig¢en different values of the lar manner a®..:
emin-

Bond number were considered for each realizatiag— § reaches
its established value whexy is about equal to 28 These results

were obtained with square lattices of size XADO. V. DISCUSSION
| A. Influence of pressure gradient variation in the liquid
MmLv . . L
Pi(zma) — Pi(ze)= %, (27 As mentioned in Sec. IVA, the scaling in terms of the
f

capillary number is based on the assumption that the pressure

) . gradient is constant across the width of the front, in direct

where k; is the global front permeability between and  5h510gy with the situations where the pressure gradient is
Zmax- As the liquid phase distribution is compact, one ex-jnqyced by the gravity forces. We made an attempt to ex-
pects thak; is not very different fromk. As shown in Fig.  piore the influence of possible pressure gradient variations
12, the numerical simulations indicate that across the front width when the gradients are induced by the
viscous forces. To this end, we performed a series of pore

ki=k. (28) network simulations including the computation of the pres-

sure fields in the liquid. The results can be found in Ref.
The pressure in the liquid @t can be related to the capillary [24], and are not reported here. We found that the pressure
pressureP. at z.. For uniform bond size distributions be- gradient is indeed not constant. It tends to be greater in the

tweenr i, andr na,, We can expresB; atz; as region of the front located closer to the dry zone. We also
explored the scaling otr and | in terms of the capillary
2y numbers. A correction to scaling was found fand . The
Pe(ze) =Pg—Pi(z)= T (29 exponents—0.55 for| and 0.59 foro drawn from the simu-
lations are slightly greater than the exponen.52 and
wherer is given by p.=[(rma—"/S] in which p, is the —-0.57 gorresponding to a constant pressure gradient. These
percolation threshold of network. simulations were performed over 40@00 networks. This
Combining the above equations leads to issue would deserve to be explored further.

B. Phase distribution in two dimensions(transient case

k
—g=y=1 * _ —
L=o=voipD Ce+peML (Pe=PgtPe)|, (30 In two dimensions we can make use of the scalind far

order to delineate the various patterns discussed in Sec. Il.
which shows that the filtration velocity, i.e., the evaporationAccording to the results presented in this paper, we have
flux, is a nonlinear function of the pressure differenc
=P.— Py, since there is a power dependence betweand EOCB*OEZ (32)
vp[ oo (Cas) Y+ "], Naturally, this nontrivial behavior
is obtained provided that is not too small compared tb.

As shown in Fig. 13, Eq(24) holds for z.=200, i.e., 6 and

=190. 200X 200 networks were used for obtaining the re-

sults depicted in Fig. 13. Therefore, we conclude thi in L

fact necessarily small comparedltavhen Eq.(30) is valid. 8P o Cg (70.5210.77 (33)
As a result, nontrivial behaviors can be expected essentially a

for the nonestablished regime, i.e., befare- § reaches its

asymptotic valuer. For given fluids, geometry, and gas pres-with Ca* =eu, /yp, , Wheree is the evaporation flux den-
surePy, one can also determine the entrance pressure rangdty. On the basis of Eq$32) and(33), it is straightforward
[ Pemin, Pemaxd fOr which a front will be observed within the to adapt the considerations of Sec. Il.
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VI. SUMMARY AND CONCLUSIONS fraction f of the evaporation flux corresponding to the con-
tribution of the main cluster was scale dependémt3 %23
. . . hese results are valid for the established regimes, i.e., when
stabilized front has been studied numerically by means o . -

. : . he front is located sufficiently away from the surface of the
pore network simulations. The width of the front can begorous medium
characterized by the mean perpendlcular distance between These results were applied to the viscous case, i.e., we
the most advanced and least advanced points of the front. We . . .

o ) . - assumed that the pressure gradients induced by the viscous

have shown that this widtll) scales in two dimensions as effects are constant across the front. It was found that non-
leB~1T(A+A)(1+Y) \where B is the percolation probability '

. . trivial behaviors could be expected, i.e., drying rates not
exponent, andv is the correlation length exponent, when . . . " .
. - ) . . .~ _scaling as Wt in the transient case, and nonlinear relations
gravity stabilizes the front. It is worth noting that this scaling . . '
L= X L . between the pressure difference and the evaporation flux in
relation is of interest not only for the specific drying problem

. L . the stationary case. However these nontrivial behaviors are
considered in this paper but also for other situations that can . . X )

. S e essentially expected for the nonestablished regimes, i.e., be-
be analyzed in terms of percolation in a gradiéditfusion

Font 00 Tis scaling Is 1 a 5ood agreement wih the % 517 st and17 ok Ataugh e
experimental result of Sha{é]. y P P

The global mass transfer coefficient of the front wasSUre gradient across the front seems to be satisfactory, further

o . o . —work is needed to completely explore this issue.
quantified for transient situations as well as for situations .
. . L In the present effort, film flows were neglected. It would
where the front reaches a stationary position within the po; . . . .
. be interesting to reconsider the problem in the presence of
rous domain. It was found that the global mass transfer COzIm flows and also in three dimensioxan insight into d
efficient, characterized by means of the position of the 9 ry

. ) : ing in 3D geometries can be found in RE25], and in the

equivalent smooth line at constant concentration, follows a ; S .

. . recent paper by Tsimpanogianmisal.[26], where a discus-

power law dependence with the Bond number, i.e., the per-: . ; S

i . . . sion on the viscous effects and a continuum description for
colation probability gradient. In the stationary case, we

found that the location of the equivalent smooth linezjs the regime upstream of the front was also presented
— o, wherez; is the average position of the front andis

In this paper, a model of 2D drying in the presence of

the s_tandard deV|at|on. Qf the front pomtl p05|t|ons. In the ACKNOWLEDGMENT
transient case, the positian— 6 of the equivalent line was
found to be located betweeny— o andz.—1/2, and to scale The authors are grateful to J. Georgiadis for a careful

asB~ %3 In the transient case, it was also obtained that theeading of the manuscript.
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